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Femtosecond X-ray pulses from X-ray free-electron laser sources make it

feasible to conduct room-temperature solution scattering experiments far below

molecular rotational diffusion timescales. Owing to the ultra-short duration of

each snapshot in these fluctuation scattering experiments, the particles are

effectively frozen in space during the X-ray exposure. In contrast to standard

small-angle scattering experiments, the resulting scattering patterns are

anisotropic. The intensity fluctuations observed in the diffraction images can

be used to obtain structural information embedded in the average angular

correlation of the Fourier transform of the scattering species, of which standard

small-angle scattering data are a subset. The additional information contained in

the data of these fluctuation scattering experiments can be used to determine the

structure of macromolecules in solution without imposing symmetry or spatial

restraints during model reconstruction, reducing ambiguities normally observed

in solution scattering studies. In this communication, a method that utilizes

fluctuation X-ray scattering data to determine low-resolution solution structures

is presented. The method is validated with theoretical data calculated from

several representative molecules and applied to the reconstruction of

nanoparticles from experimental data collected at the Linac Coherent Light

Source.

1. Introduction

The structure of biological macromolecules is the key to

understanding their function and behavior in living cells.

The number of structures deposited in the Protein Data

Bank (PDB) (Bernstein et al., 1977) currently exceeds 82 000,

yet many important structures of biological molecules and

their complexes have not been determined. Currently, more

than 80% of structures are solved using X-ray crystallography,

which relies on the growth of well diffracting crystals that

can survive a high dose of X-rays during data collection.

Other methods, like nuclear magnetic resonance (NMR) and

cryo-electron microscopy (cryo-EM), have been successful

tools for structure determination but have historically lacked

high-throughput capabilities and pose size restrictions on

systems studied. Structures of molecular complexes and their

behavior in solution are often studied by combining the

information from high-resolution crystal structures of

domains together with experimental small- or wide-angle

X-ray scattering (SAXS/WAXS) data in solution (Putnam

et al., 2007). This combined multi-resolution approach allows

one to understand the structure and dynamics of macro-

molecules in solution and often plays an important role in

revealing a holistic viewpoint of the system under study

(Krukenberg et al., 2011).

A recent development is the use of X-ray free-electron

lasers (XFELs), such as the Linac Coherent Light Source

(LCLS) (Emma et al., 2010), in structural biology. For mole-

cules or complexes where growing sufficiently large crystals

for synchrotron X-ray crystallography is difficult, the method

of serial femtosecond macromolecular nanocrystallography

has been developed (Chapman et al., 2011). The basic idea

behind this new technique is to record the instantaneous

elastic scattering using a pulse so brief that it terminates

before radiation damage has time to develop (‘diffract before

destroy’) (see Spence et al., 2012, for a review). Although great

strides have been made in serial nanocrystallography (Boutet

et al., 2012; Kern et al., 2012; Aquila et al., 2012), the structures

of macromolecules determined in this fashion are still in the

solid state, limiting the capability to deduce the structure and

dynamics of macromolecules in a variety of dissimilar

conformations without altering crystallization conditions. The

diffract-before-destroy nature of serial nanocrystallography

applies to single-particle and solution scattering as well

(Neutze et al., 2000; Barty et al., 2012; Seibert et al., 2011) and

offers the theoretical opportunity to image single molecules at
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room temperature (rather than in the frozen state needed to

reduce radiation damage in protein crystallography) in a

variety of conformations (Giannakis et al., 2012; Schwander

et al., 2012) or, in the case of femtosecond solution scattering,

to provide additional experimental information as compared

to standard synchrotron SAXS/WAXS, as will be discussed

below.

For the case of XFEL microdiffraction scattering with one

particle per shot, four major challenges exist. First of all, the

signal-to-noise (S/N) ratio is small despite the large number

of incident photons (e.g. 1012 in a single pulse). A typical, very

large virus scatters about 106 photons per pulse, with scat-

tering falling off as the inverse fourth power of scattering

angle, resulting in few photons per shot per Shannon pixel at

1 nm resolution, so that background counts will quickly

dominate. Secondly, as the orientation of the sample for each

shot is unknown, this must be determined before data can be

merged (to improve the S/N problem in the first challenge)

and the phase problem then solved for the resulting three-

dimensional data set (Shneerson et al., 2008). Thirdly,

diffraction images should only originate from single particles if

they are to be useful for the currently available reconstruction

methods. While the hit rate for single-particle patterns is

typically a few percent (most X-ray pulses miss particles

altogether), the hit rate for solution scattering from a

continuously flowing liquid stream is 100%. Finally, biological

macromolecules exhibit conformational heterogeneity that

typically increases with size. This latter problem exacerbates

the former three, making the three-dimensional molecular

reconstruction of single-particle scattering data a difficult

computational challenge (Fung et al., 2009; Loh et al., 2010;

Yoon et al., 2011).

An alternative approach to the single-particle strategies

described above is the method proposed by Kam (1977) and

Kam et al. (1981), illustrated here in Fig. 1. In the latter papers

a technique called fluctuation X-ray scattering (fXS) is intro-

duced that does not require a single particle per shot. In this

technique, it is shown that the average of angular correlation

functions of diffraction patterns, each taken from an ensemble

of randomly oriented identical particles, will converge to that

for one particle. XFEL diffraction data are perfect for the

application of Kam’s theory, since it can provide solution

scattering at room temperature, where, using the ‘diffract-

before-destroy’ mode, resolution is not limited by radiation

damage. Furthermore, while the low-signal diffraction

patterns and unknown orientation create challenges for other

methodologies, it is simple to compute the angular auto-

correlations and extract the associated fluctuation X-ray

scattering profiles, since these do not

require a knowledge of particle orien-

tation in order to merge data. The fXS

method when carried out on particles in

solution is furthermore immune to the

hit-rate problems observed in single-

particle scattering experiments. In the

latter case, hit rates decline as the beam

diameter approaches the submicron

size of single particles owing to

experimental alignment difficulties and

instabilities (Weierstall et al., 2012). In

contrast to the single-particle scattering,

in which hit rates are typically below

5%, the hit rate for fXS will be 100%

when using an X-ray beam much wider

than one particle. The Kam method

assumes that coherent interparticle

interference effects are suppressed, so

that the sum of many single-particle-

per-shot patterns is the same (apart

from S/N) as a single shot containing

many particles.

Angular autocorrelations, as

obtained from experimental data, can

be reduced to a series of resolution-

dependent expansion coefficients, akin

to SAXS data (Saldin et al., 2009). These

angular autocorrelation functions are

the self-convolution of the diffraction

pattern intensity taken around concen-

tric rings in the pattern. These expan-

sion coefficients are related to the

research papers

366 Haiguang Liu et al. � Three-dimensional single-particle imaging Acta Cryst. (2013). A69, 365–373

Figure 1
The fluctuation X-ray scattering profile computation process from many femtosecond diffraction
patterns. Many diffraction patterns are collected from the femtosecond X-ray scattering
experiments at an XFEL light source (a)! (b). The autocorrelation C2ðqÞ is computed for each
diffraction pattern (DP) and then averaged over all collected DPs (b)! (c). The fXS profiles BlðqÞ
are then calculated from the converged C2ðqÞ (c)! (d). The focus of this work is to reconstruct the
three-dimensional model from the fXS profiles shown as in (d).



amplitudes of a spherical harmonic expansion of the scattering

pattern of a single molecule. The individual fXS curves carry

essential structural information embedded in the original

scattering patterns. The zeroth-order curve, for instance, is

equivalent to the square of the standard SAXS data. The

original proposal by Kam was to determine the three-

dimensional scattering volume from these fXS curves and

subsequently apply standard phase-retrieval methods to yield

a real-space model. The computational challenges to tackle

this hyper-phase problem are, however, non-trivial and it has

been suggested that they prevent a complete structure

recovery (Elser, 2011) from fXS. In two dimensions (particles

differing only by rotation about a single axis), however, the

problem does become tractable and both theoretical studies

(Saldin, Shneerson et al., 2010) and experimental proof-of-

principle experiments have been carried out with great success

(Saldin, Poon et al., 2010; Chen et al., 2012).

In three dimensions, particle symmetry constraints have

been used in the structure solution process to allow for an

efficient solution of the hyper-phase problem (Saldin, Poon,

Schwander et al., 2011), but no general solution has yet been

demonstrated for non-symmetric particles. Following the

success with real-space procedures in the structure solution of

SAXS data (Svergun et al., 2001) and two-dimensional fXS

data (Chen et al., 2012), a novel method is proposed here in

which a reverse Monte Carlo (McGreevy & Pusztai, 1988)

procedure is used to determine the structure from fXS data.

Unlike the Kam approach, in which the angular correlation

function is directly converted to a real-space density by a

double phasing approach (Saldin, Poon, Bogan et al., 2011),

our approach here is based on optimization of the angular

correlation function of a trial model for best fit to the

experimental angular correlation function, summed from

many diffraction patterns, each from multiple particles. The

structure solution procedure proposed uses three-dimensional

Zernike polynomials to represent molecular models (Novotni

& Klein, 2003; Mak et al., 2008; Liu, Morris et al., 2012) and

utilizes the relation between the three-dimensional Zernike

moments to the fXS profiles (Liu, Poon et al., 2012). In this

paper, the reverse Monte Carlo method has been tested using

simulated data from various molecular structures. The method

is then applied to the reconstruction of images of ellipsoidal

iron oxide nanoparticles (nanorice) using experimental LCLS

femtosecond diffraction data (Loh et al., 2010) available from

the CXIDB (Kassemeyer et al., 2012).

2. Methods

2.1. Fourier transform of a three-dimensional Zernike
polynomial

The three-dimensional Zernike model is a compact

description of three-dimensional shapes using convenient

orthogonal polynomials. The definition of a three-dimensional

Zernike polynomial of order ðn; l;mÞ is

ZnlmðrÞ ¼ RnlðrÞYlmð�Þ; ð1Þ

where RnlðrÞ is the three-dimensional Zernike radial function

and Ylmð�Þ is the spherical harmonic of order ðl;mÞ. Because

three-dimensional Zernike polynomials are orthogonal in the

unit sphere (i.e. r � 1), any twice differentiable function

enclosed in the sphere, after suitable rescaling, can be

approximated with a weighted polynomial series:

�ðrÞ ’
Pnmax

n¼0

Pn
l¼0

Pl

m¼�l

cnlmZnlmðrÞ; ð2Þ

where the complex coefficients cnlm are the three-dimensional

Zernike moments:

cnlm ¼
3

4�

Z
jrj�1

�ðrÞZ�nlmðrÞ dr: ð3Þ

The three-dimensional Zernike moments can be efficiently

computed via the Novotni & Klein algorithm (Novotni &

Klein, 2003).

The Fourier transform of the three-dimensional Zernike

polynomial approximation can be used to compute the

complex scattering function of �ðrÞ. It can be shown that, for a

model with radius rmax, the complex scattering factor at q is

given by

AðqÞ ¼ 4�
P1

n

Pn
l

Pþl

m¼�l

ilð�1Þðn�lÞ=2
cnlmY�lmð!qÞbnðqrmaxÞ ð4Þ

with

bnðqrmaxÞ ¼
jnðqrmaxÞ þ jnþ2ðqrmaxÞ

2nþ 3
: ð5Þ

Details of the derivation are provided in Liu, Morris et al.

(2012) and Liu, Poon et al. (2012).

2.2. The relation between Zernike moments and the average
angular autocorrelation

Experimentally, the average angular correlation function

can be extracted from data acquired in femtosecond X-ray

scattering experiments using

C2ðq; q0�’Þ ¼
1

N

X
i

X
’

Iiðq; ’ÞIiðq
0; ’þ�’Þ; ð6Þ

where Iiðq; ’Þ is the scattered intensity of pattern i at a pixel

position corresponding to reciprocal-space point (q; ’). Given

a sufficient number of scattering patterns (each from one or

multiple identical particles), this correlation will converge to a

fixed value (Kam, 1977; Kam et al., 1981; Kirian et al., 2011;

Saldin et al., 2009). The procedure of extracting the embedded

fXS profile from femtosecond X-ray diffraction patterns is

summarized in Fig. 1. As indicated in the latter expression, the

correlation function can be computed either within a fixed

resolution shell, q ¼ q0, or involve two resolution rings q 6¼ q0.

In the remainder of this paper, we will focus on the use of

autocorrelations for which q ¼ q0 and denote this correlation

as C2;qð�’Þ. The use and utility of correlations between

resolution rings, i.e. q 6¼ q0, will be highlighted in the discus-

sion of this paper (x3.5).
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The angular autocorrelation C2ðqÞ can be decomposed into

a weighted series of Legendre polynomials (Saldin et al.,

2009):

C2;qð�’Þ ¼
P

l

Flð�’ÞBlðqÞ; ð7Þ

where BlðqÞ are the weights and

Flð�’Þ ¼
1

4�
Pl cos2 �ðqÞ þ sin2 �ðqÞ cosð�’Þ
� �

: ð8Þ

Plð�Þ is a Legendre polynomial and

�ðqÞ ¼ �=2� sin�1
ðq=2�Þ; ð9Þ

where � is equal to the wavenumber 2�=� with � the wave-

length of the incident radiation. The weights BlðqÞ and the

estimated uncertainties �lðqÞ can be obtained using standard

numerical techniques from the experimentally obtained C2ðqÞ

patterns (Saldin et al., 2009). The full collection of BlðqÞ curves

compose an fXS data set.

The three-dimensional Zernike moments themselves are

related to the BlðqÞ curves as described in detail in Liu, Poon

et al. (2012) and summarized below. The coefficients cnlm are

linked to a spherical harmonic expansion of the intensities as a

function of resolution via a Gaunt series:

IlmðqÞ ¼
P

l0

P
l00

P
m0

P
m00

al0m0 ðqrmaxÞal00m00 ðqrmaxÞG
mm0m00

ll0l00 ; ð10Þ

where Gmm0m00

ll0 l00 are Gaunt coefficients and coefficients

almðqrmaxÞ are a function of cnlm via

almðqrmaxÞ ¼
Pnmax

n

wnlðqrmaxÞcnlm ð11Þ

with

wnlðqrmaxÞ ¼ il
ð�1Þðn�lÞ=2

bnðqrmaxÞ: ð12Þ

Finally, one can show that (Kam, 1977; Saldin et al., 2009)

BlðqÞ ¼
P
m

jIlmðqÞj
2: ð13Þ

2.3. Structure solution procedure

The real-space model reconstruction

method utilizes two basic real-space

operations to modify an initial trial

solution. Modification to the proposed

trial solutions are random dilations or

erosions of the existing body (Fig. 2). In

a dilation, the existing body is extended

at a certain position, whereas in an

erosion, a piece of the model is carved

out and discarded. The main reasoning

behind these operations is that they

are local, affecting only the surface of

the current model and, in principle, do

not tend to generate trial solutions

that consist of many disconnected parts.

It must be stressed, however, that no

topology-conserving constraints or compactness-enforcing

restraints are used in the reconstruction, in contrast to what is

used during similar SAXS shape-reconstruction methods

(Svergun et al., 2001; Svergun, 1999; Franke & Svergun, 2009).

Proposed random modifications to the model are accepted on

the basis of the well known Metropolis–Hastings criteria

(Metropolis et al., 1953).

2.3.1. Model perturbations. Because the resolution range of

the experimental data lies well within the range in which one

can model macromolecules relatively well using a uniform

density approximation, the optimization problem is limited

to placing beads of density onto a grid, similar to the task

performed in SAXS (Svergun, 1999). Owing to the Monte

Carlo approach used in the optimization, small changes to a

trial model are favored over large modifications. The three-

dimensional model is built on a predefined grid with a size

based on the analysis of the SAXS data. By default, the

starting model is a hollow sphere with an outer radius equal to

80% of the grid radius and an inner radius equal to 30% of the

grid radius. The model reconstruction is processed on a cubic

grid with (40 � 40 � 40) voxels unless specifically mentioned.

Although the final results do not depend on the starting

model, convergence times can be significantly reduced by a

judicious choice of the starting model. Changes to the trial

model are done using the following two-step procedure:

(i) Pick a voxel at random from a predetermined list of

voxels that are allowed to be modified. The predetermined list

of voxels only contains voxels that lie within a preset radius of

other border voxels.

(ii) If the density of this voxel is equal to 1, set the density of

all neighbors to 1 (dilation). If the density of this voxel is 0, set

all neighbors to this voxel to 0 (erosion).

Only model perturbations in which the full model actually

changes are carried out; ‘null modifications’ are not allowed

and, when detected, the procedure is attempted again.

Because changes to the trial model are biased to the surface

only, the modification procedure tends to produce densities

that are connected and does not produce scattered, discon-
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Figure 2
Model perturbation method. Two perturbation modes are used: dilation and erosion.



nected clumps of density. After each perturbation, the Zernike

moments, cnlm, of the modification to the model are computed

and are either added (in the case of model dilation) or

subtracted (in the case of model erosion) from the three-

dimensional Zernike moments of the trial model. The new set

of cnlm are used to compute model fXS curves as described

above. The rate-limiting step in the latter procedure is the

computation of the modified three-dimensional Zernike

moments, cnlm. The timings in this step depend on the number

of voxels involved in the model perturbation. Changes to the

trial model are accepted on the basis of the Metropolis–

Hastings criteria as explained below.

2.3.2. Simulated annealing optimization. The target of the

optimization is the goodness-of-fit between the model and

experimental fXS profiles, measured by �2 defined as

�2 ¼
1

NqL

XL

l¼0

XNq

j¼1

B
expt
l ðqjÞ � kBmodel

l ðqjÞ

�expt
l ðqjÞ

" #2

: ð14Þ

The perturbations described in the previous section are either

accepted or rejected to improve the model–data agreement.

The acceptance probability is controlled by a Boltzmann

distribution of �2, following the Metropolis–Hastings criteria.

The simulated annealing (SA) algorithm is employed to avoid

becoming trapped in local minima (Kirkpatrick et al., 1983).

One of the critical parameters for this SA algorithm is the

starting temperature. The starting temperature is chosen on

the basis of the standard deviation of �2, calculated from a

number of random perturbations of the starting model (100

perturbations by default). The cooling scheme used is expo-

nential decay, where the temperature at cooling step t is

TðtÞ ¼ T0	
t, with 	 ¼ 0:9 as the default value. At each

temperature, 500 perturbation steps will be carried out. The

optimization is terminated if either the temperature is lower

than 0.01% of the starting temperature or the acceptance ratio

is below 10.0%.

2.3.3. Model superpositioning. Multiple trial solutions from

independent runs can be compared by aligning the three-

dimensional models. Given the fact that independent trial

solutions have the same rmax, the center of mass for the final

models is mostly aligned to the center of the sphere; therefore

only a rotational alignment needs to be performed. Because

the trial models available have been modeled with three-

dimensional Zernike polynomials, a correlation-based align-

ment using fast Fourier methods can be employed. The spatial

correlation coefficient is defined as

CC ¼
h�fixedðrÞ�movingðrj	; 
; �Þi � h�fixedðrÞih�movingðrj	; 
; �Þi

�ð�fixedÞ�ð�movingÞ
;

ð15Þ

where �fixedðrÞ refers to the reference model and

�movingðrj	; 
; �Þ refers to the to-be-aligned object after a

rotation with Euler angles ð	; 
; �Þ. It can be shown that

angles ð	; 
; �Þ that maximize CC can be found using a series

of two-dimensional Fourier transforms (Appendix A).

3. Results and discussion

3.1. Model reconstruction from simulated data

The performance of the algorithm has been tested using

theoretical fXS profiles of four model systems, namely (a)

lysine-, arginine-, ornithine-binding protein (LAO); (b) lyso-

zyme; (c) peroxiredoxin protein; and (d) satellite tobacco

mosaic virus (STMV). Each example represents particular

molecular groups: lysozyme and LAO are typical globular-like

proteins, the peroxiredoxin protein complex has a donut

architecture, whereas the STMV virus has icosahedral

symmetry with a central cavity. fXS profiles were computed

using the methods described previously (Liu, Poon et al.,

2012), up to a q value of 0.25 Å�1. To gauge the reconstruction

accuracy, we computed the spatial correlation coefficient

between the reconstructed model and the original PDB

model, aligned to the proposed solution, rendered onto three-

dimensional grids as a body with uniform density (Appendix

A). As can be seen from Table 1, the average correlation

coefficients of the reconstruction versus the known model are

above 75%, indicating the high quality of the fit (Fig. 3). Key

parameters used in model constuction are found in Table 2. In
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Table 1
Summary of the model reconstruction from the simulated data.

The density correlation coefficient (cc) was calculated using the method
described in Appendix A with nmax ¼ 20. The cc’s are averaged from ten runs
and the number in parentheses is the standard deviation of the cc’s.

Name cc (start) cc (fXS) cc (SAXS) PDB ID rmax (Å)

LAO 0.46 0.77 (0.03) 0.68 (0.07) 2lao 35.0
Lysozyme 0.50 0.76 (0.02) 0.69 (0.03) 6lyz 25.0
Peroxiredoxin 0.45 0.87 (0.04) 0.39 (0.06) 2e2g 75.0
STMV 0.57 0.83 (0.06) 0.50 (0.08) 1a34 100.0

Figure 3
The four molecular structures used in the testing cases. The reconstructed
models are superposed to the original PDB models, where the PDB
models are represented using cartoons, and the reconstructed models are
shown in the form of density isosurfaces. (a) LAO binding protein, (b)
lysozyme, (c) peroxiredoxin and (d) STMV. They are not shown to scale;
see Table 1 for the actual sizes.

Table 2
Key parameters for model reconstruction.

Name rmax qmax (Å�1) Voxel size (Å)

LAO 35.0 0.25 1.75
Lysozyme 25.0 0.25 1.25
Peroxiredoxin 75.0 0.25 3.75
STMV 100.0 0.10 5.00



order to assess the increase in information contained in an fXS

data set as compared to a standard SAXS data set, the

reconstruction algorithm was applied on B0ðqÞ, the square of a

SAXS curve. The SAXS shape-reconstruction attempts are

only marginally successful with average correlation coeffi-

cients below 70%. Furthermore, the shape reconstructions

from SAXS data sometimes result in multiple disconnected

bodies, highlighting a loss of information when using only

SAXS data as compared to the fXS data set.

3.2. Model reconstruction from experimental data

The proposed reconstruction method was also tested using

experimental data collected at the LCLS. Here, we present the

results for ellipsoidal iron oxide nanoparticles, also known as

nanorice. As observed in TEM (transmission electron micro-

scopy), the nanorice has a size variation from 150 to 250 nm in

the longest axis (Fig. 4a). Publicly available X-ray scattering

data of nanorice (Bogan et al., 2008) were downloaded from

the CXIDB (Kassemeyer et al., 2012). Figs. 4(a) and 4(b) show

TEM images and representative single-particle diffraction

patterns of the nanorice sample, respectively. The available

scattering patterns were filtered to exclude multiple-hit

patterns. The reason for this filtering step was to ensure a high-

quality data set given the limited size of the data set. Although

multiple-particle shots are tolerated in an fXS experiment,

experimental autocorrelation profiles converge faster when

only single particles are used (Kirian et al., 2011). After image

selection, about 800 scattering patterns remained from which

an fXS data set was obtained (Fig. 4c). Because of the limited

data-set size and associated convergence issues, BlðqÞ curves

were limited up to l ¼ 4 (Fig. 4c). Experimental data up to

about qmax ¼ 0:0156 Å�1 (�413 Å) were used during model

reconstruction. The model reconstruction is carried out on a

three-dimensional grid of 50 � 50 � 50 and the starting

hollow-sphere radius is 1200 Å. As a result, the voxel size is

about 483 Å3. The reconstructed model captures the structural

features of nanorice particles, as shown in Fig. 4(d), providing

a proof of principle of our method on experimental data. It is

worth pointing out that the obtained model is an averaged

model from all nanorice particles that contribute to the scat-

tering data. To achieve a high-resolution model, the sample

particles need to be in agreement up to the desired resolution.

3.3. Performance and speed

The underlying procedure for computing fXS profiles and

the need to only recompute three-dimensional Zernike

moments of the small trial perturbations allow for fast

recomputation of the target function, a prerequisite for effi-

cient Monte Carlo-based methods. Average timings for all

examples are shown in Fig. 5 for various expansion orders. The

expansion order, nmax, determines the resolution of the final

model and the maximum momentum transfer limit that can be

used during fitting (Liu, Poon et al., 2012). Reconstruction

times lie well under 2 h for all models, but can likely be

speeded up by further algorithmic improvements.

3.4. Uniqueness

Given the analyses by Elser (2011) showing that structure

determination from fXS data is an under-constrained problem,

the demonstrated reconstructions seem to contradict these

findings. The arguments in the latter study indicate that the

data-to-parameter ratio is about 70% under the assumption of

independent density values in real space. This lack of infor-

mation should result in degenerate solutions that do not need

to resemble the target structure. This would be the case for

either solving the hyper-phase problem or when using a real-
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Figure 4
The nanorice data and reconstructed model. (a) TEM image of the
nanorice sample. (b) Representative diffraction patterns collected at the
LCLS. (c) fXS profiles extracted from a subset of about 800 diffraction
patterns. (d) The reconstructed three-dimensional models in bead
representations in three view angles. (a) and (b) are reproduced from
Kassemeyer et al. (2012) with permission from the Optical Society of
America.



space approach. In practice, however, solutions are not

degenerate and match the target shape. The reason for this

seemingly contradictory result (Elser, 2011) is most likely

because the number of independent variables in real space is

significantly reduced by the fact that, at low resolution, regions

of molecular density are connected and smooth. This addi-

tional information is used successfully in restraining the

structure determination from SAXS data to guide the solution

process to produce physically meaningful structures (Svergun,

1999; Svergun et al., 2001). Although connectivity restraints

are not used directly in the proposed algorithm, the update

scheme tends to favor the exploration of the part of solution

space that produces connected structures, thus naturally

limiting the size of the feasible set of solutions, resulting in

meaningful reconstructions.

3.5. The use of angular correlations across resolution shells

As shown in equation (6), correlations between resolution

shells ðq0Þ can be computed in a straightforward manner.

Given that these correlations provide additional experimental

information, it is not unlikely that the use of this information

will strengthen the real-space structure solution procedure

outlined in this manuscript. In fact, the use of these correla-

tions are essential for structure solution procedures that

attempt to solve the ‘double phase problem’ (Saldin, Poon

et al., 2010; Saldin, Shneerson et al., 2010; Saldin et al., 2009).

Another exciting possible application of the cross correlation

data is to use this information as an unbiased quality measure

of the proposed model. The use of this data in cross validation

can reduce over-fitting (Brünger, 1992) and assist in model

identification (Schneider & Sheldrick, 2002).

4. Conclusions

We have demonstrated the feasibility of ab initio model

reconstruction based on fXS profiles that can be extracted

from ultra-fast X-ray scattering experiments. The new X-ray

free-electron laser light sources, together with the develop-

ment of fast detectors and computational models, now allow

Kam’s (1977) theory to be applied in practical applications for

the first time. As we have shown from the simulation and

experimental data, three-dimensional low-resolution struc-

tures can be obtained from fXS data. The additional infor-

mation content in the data reduces or even eliminates the

need for external spatial constraints, thus significantly redu-

cing ambiguities in the determination of low-resolution solu-

tion models.

The algorithm and procedures presented here demonstrate

a diminished need for explicit spatial restraints when solving

structures from fXS data as compared to traditional SAXS

data. This is especially the case in the early stages of the

structure solution method. Nevertheless, the application of

prior knowledge, either based on symmetry or basic topolo-

gical features, can speed up the structure solution process. It

must be noted that an initial guess of the size of the particle is

required to start the reconstruction. This information can be

easily obtained from an analysis of the SAXS data, ½B0ðqÞ	
1=2

(Liu, Hexemer et al., 2012). As scattering data extend to

higher resolution, higher-order Zernike polynomials are

required to model the fXS profiles and more spatial details can

be obtained. A basic rule of thumb states that qmaxR ¼ lmax,

where R is equal to the radius of the particle and qmax is

the maximum available momentum transfer value of the

data (Pendry, 1974). This rule also guides the choice for

the expansion order, nmax, in the reconstruction, requiring

nmax 
 qmaxR.

Although experimental challenges for the fXS technique

still need to be addressed, the presented results indicate that a

successful fXS experiment produces significantly more infor-

mation compared to a standard synchrotron SAXS/WAXS

experiment. This is a result of the two-dimensional nature of

fXS data, rather than the one-dimensional data used in SAXS/

WAXS. The reduction of ambiguities sometimes present in the

interpretation of SAXS/WAXS data is likely to result in an

improved understanding of the structural and dynamic prop-

erties of macromolecules in solution.

APPENDIX A
Fast Fourier alignment of three-dimensional Zernike
polynomial-based models

Expressing ��ðrÞ as a sum of three-dimensional Zernike

polynomials,

��ðrÞ ¼
Pnmax

n¼0

Pn
l¼0

Pl

m¼�l

c�nlmRnlðrÞYlmð!Þ; ð16Þ

one obtains for the mean:
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Figure 5
The performance of the reconstruction algorithm. The computing time
increases exponentially with respect to the maximum expansion order.
With nmax ¼ 20, the computing time is still within the capacity of a single
processor, since it takes about 1.5 h to obtain the converged model for the
most difficult case, the STMV. For higher orders, parallelization with
computer clusters or GPUs should be used to speed up the reconstruc-
tion.



h��ðrÞi ¼
R
jrj�1

��ðrÞ dr ¼ jc�000j: ð17Þ

Similarly, the variance of ��ðrÞ can be obtained as

�2
ð��Þ ¼

R
jrj�1

��ðrÞ � h��ðrÞi
� �2

dr

¼
Pnmax

n>0

Pn
l¼0

Pþl

m¼�l

ðc�nlm½c
�
nlm	
�
Þ: ð18Þ

The cross term h�fixedðrÞ�movingðrj	; 
; �Þi is evaluated with a

fast Fourier transform (FFT)-based method for all possible

orientations. Following Trapani & Navaza (2006), this so-

called rotation function takes the form

R½	; 
; �	 ¼
Plmax

l¼0

Pl

m;m0¼�l

Cl
m;m0D

l
m;m0 ð	; 
; �Þ ð19Þ

with Dl
m;m0 ð	; 
; �Þ defined in equation (24) and

Cl
m;m0 ¼

4�

3

Z1

0

cfixed
lm ðrÞ½c

moving
lm0 ðrÞ	

�r2 dr; ð20Þ

where the functions cfixed
lm ðrÞ and c

moving
lm ðrÞ are radial dependent

expansion coefficients of the fixed and moving three-

dimensional models, respectively:

�ðrÞ ¼
Plmax

l¼0

Pl

m¼�l

clmðrÞYlmð!rÞ: ð21Þ

From equation (16) it is easy to see that

clmðrÞ ¼
Pnmax

n¼0

cnlmRnlðrÞ: ð22Þ

The orthogonality in the radial part of the three-dimensional

Zernike polynomials quickly leads to

Cl
m;m0 ¼

4�

3

Xnmax

n

cfixed
nlm ½c

moving
nlm0 	

�: ð23Þ

Using

Dl
m;m0 ð	; 
; �Þ ¼ dl

m;m0 ð
Þ exp½iðm	þm0�Þ	; ð24Þ

the familiar fast rotation function in sections of 
 appears:

R
½	; �	 ¼
Plmax

m¼�lmax

Plmax

m0¼�lmax

Sm;m0 ð
Þ exp½iðm	þm0�Þ	;

Sm;m0 ð
Þ ¼
P

l

Cl
m;m0d

l
m;m0 ð
Þ; ð25Þ

where dl
m;m0 ð
Þ is the Wigner small-d function. It can be

computed using standard recurrence relations or more

advanced FFT methods as described by Trapani & Navaza

(2006). After computing the rotation function in sections of

fixed 
, a subsequent peak picking can provide a list of

approximate solutions that can be further optimized using

local search methods.
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